
OpenCL Realization of Algorithm for Modelling

of Heat Conducting Processes
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Introduction

We describe the OpenCL realization of the algo-

rithms for solving the direct problem for the heat

equation with a periodic source for modelling the

thermal processes inside a pulsed cryogenic cell.

This cell periodically injects working gases to the

electron-string ion source. The cell is represented as

a multilayer cylindrical object in which the thermal

processes drove by periodic electric current passing

through one of the conductive layers.

Problem Formulation

The direct problem for the heat equation in cylin-

drical coordinates can be formulated as following:
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where r ∈ [0, rmax(z)], z ∈ [0, zmax(r)] and t ≥ 0.

The m is index of the layers (materials). The source

function is nonzero only in layer m = 2 (X2(T ) 6=

0). The functions of heat capacities and thermal

conductivities and source function of materials are

given from [?] and fitted as describe in [?].
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where δΩ is the bound of the T domain (Ω), and

the initial condition is

T (r, z, t = 0) = T0, (3)

where T0 ≡ 4.2 (liquid helium temperature). Con-

jugation condition between materials considered to

be ideal.

Numerical Scheme

For numerical solution the initial-boundary-value

problem (1)–(3), the equation (1) was approximated

by the following finite difference scheme at the spe-

cial non-uniform grid [?]:

ρCV i,j

̂Ti,j − Ti,j

τ
= Λi [ ̂Ti,j ] + Λj [ Ti,j ] + Xi,j ,

(4)

here the finite difference operators are:
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where ri± 1
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; i = 1 . . . Nj − 1,

j = 1 . . . M − 1 are indexes of the grid points;

hi = ri − ri−1, ηj = zj − zj−1, h̄i =

0.5 (hi+1 + hi), ηj = 0.5 (ηj+1 + ηj) are the

space steps; Ti,j = T (ri, zj , tk) – the sought-

for function on current time of evolution, always

known starting from initial conditions; ̂Ti,j =

T (ri, zj , tk+1) – the sought-for function at the

next in the time; λi,j = λm(Ti,j), λi± 1
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,

CV i,j = CV m(Ti,j) – corresponding values of the

coefficients. Xi,j = Xm(Ti,j) – source function.

The finite difference scheme (4) approximate the

equation (1) implicitly in r direction and explicitly

in z direction. To be short we don’t describe here

the approximation of the boundary conditions.

OpenCL Realization

The OpenCL realization of the numerical algo-

rithm described in the previous section based on

the following idea. In each time step the cycle

for j-index from 1 to M − 1 is parallelized. Each

called thread simultaneously calculates the sought-

for function by the Thomas algorithm, see Fig. 1.
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On the figure we show the discretization of the func-

tion domain. Particularly we group a set of points

corresponding to one jth thread. We also show

the points involved in calculation of the given (i, j)

point (bold point and crossed points on the Fig. 1).

Note, that for each (i, j) point the two of the in-

volving points used by neighbor threads (j − 1 and

j + 1 threads), this demonstrates possibly memory

sharing problem in our algorithm.
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Figure 1: Schematic representation of discretization

of the function domain.

Results and Discussion

The time calculations for different N × M are

given in the Table ??. The calculation has been

done for evolution up to t = 0.0765 sec. with time

step τ = 10−6 sec. CPU – Core i7 3517U (Ubuntu

11.0). GPU – GF GTX 470 (Core 2 Duo, Debian

6.0). For compilation of programs -O2 optimiza-

tion flag have been used. GTG 470 has 14 stream-

ing multiprocessors (SM), and each SM contains 32

computational cores. It is shown, that since GPU

allows to run a lot of threads parallel the calcula-

tion time remains approximately the same on GPU

in contrast with CPU, when M increases.

Table 1: Time of calculation

N × M CPU1 GPU2

431 × 101 309 sec. 345 sec.

431 × 201 607 sec. 349 sec.

431 × 401 1315 sec. 357 sec.

631 × 401 1968 sec. 509 sec.

For the further minimization of calculation time

on GPU for described algorithm we assume an op-

timization of memory usage. For instance, remov-

ing the possible conflict of sharing GPU memory

between parallel running threads. As well as min-

imizing number of calls to global memory in each

threads.

Further Application

One of important developments of the above de-

scribed applications for use calculations on GPU is

the parallelization of the numerical algorithm for

solving the heat transport equation

cveΦ ∂T

∂t
+~∇ · (e2Φ ~F ) = e2ΦQ (7)

for the simulation of cooling of compact stars with

strong homogeneous magnetic field [?, ?]. In this

equation the flux reads:

~F = −e−Φκ̂ · ~∇(eΦT ) (8)

where κ̂ is the thermal conductivity tensor and Φ

is metric function describing the geometry of space-

time manifold and it is time independent.

This problem is similar to the above considered

problem with a different geometry. In this case

the axial symmetric temperature distribution evalu-

ated in the spherical symmetric distributed matter,

therefore the most relevant choice of coordinate sys-

tem is the spherical one (r, θ).

The other specific difference of this problem is

that the integrating scheme is more effective if one

uses the implicit-explicit scheme with change of

directions (alternating direction method). So to

present the method let us approximate the differen-

tial equation (??) by the following finite-difference

scheme:

un+1

i,j − un
i,j

∆tn
+ σΛi

[

un+1

i,j

]

+ (σ − 1)Λj

[

un+1

i,j

]

= (σ − 1)Λi

[

un
i,j

]

− σΛj

[

un
i,j

]

+ Si,j

[

un
i,j

]

+ Sj,i

[

un
i,j

]

+ Q; (9)

for unknown function u = log(T ). Index n accounts

the time steps, ∆tn is the time step for correspond-

ing n-moment of the time, (i, j) are the indexes

of the point on (r, θ) plane. Λi and Λj the oper-

ators representing the second order derivatives in

the finite-deference scheme in the one and the other

directions, Si,j and Sj,i corresponding to mixed

derivatives, and Q is the source term. Here we in-

troduced parameter σ, which defines the change of

the direction of the implicit and/or explicit method;

when σ = 1 the direction i is solving implicitly,

when σ = 0 the method is implicit in the direction

j, note that it concern both angle and radius.

The realistic simulation of the physical problem

of cooling of magnetars [?] needs a long time of cal-

culations therefore it is important to use more effec-

tive methods for simulation. The discussed above

approach realized in OpenCL can be considered as

a half step of the alternating direction method.
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